
Technical Debt
17-313 Fall 2024

Foundations of Software Engineering
https://cmu-17313q.github.io

Eduardo Feo Flushing
Sources:

● Managing Technical Debt. Ipek Ozkaya. CMU SEI

https://cmu-17313q.github.io/

• P3A due tonight
• You can collect your cheat sheets
• There was a post-midterm activity with bonus

points

Administrivia

Midterm Feedback

• Avoid generic answers
• Risk: What is a mitigation plan?
• Architecture:

• What can go wrong if we don’t plan it?
• Design Docs:

• Definition of success: Why would you use microservices in the first
place?

• Code Reviews:
• Checklist is for reviewers not for reviewee
• You shouldn’t include checks that can be automated (why not?)

• Continuous Integration
• What is it? What advantages does it bring to the process?

Midterm Wrapper

Model Answers & Clearer Expectations:

Instead of direct answers, we will provide model solutions that
illustrate how to approach questions effectively. This will help you
understand the level of detail and structure expected without
compromising the need for critical thinking.

Midterm Wrapper

Exam Clarity & Time Management:

Some questions may feel under-specified, and this is intentional.
It encourages you to apply concepts critically, as real-world
problems often require interpretation. Specifying too much would
limit this learning opportunity, so the goal is to develop your
problem-solving skills. If we specify exactly what we expect,
we are essentially giving away the answer, which limits your
ability to think through and apply the concepts independently.

Midterm Wrapper

Tailored Recitations & More Review Sessions:

While we can’t offer more than one review session, we will
schedule an optional review session with CAs for those who want
extra practice. Additionally, you are encouraged to attend office
hours to ask questions about both theory and application.

Midterm Wrapper

Course Material & Application:

You are encouraged to take notes during lectures, as it helps
improve understanding and retention. Consider handwriting
notes to engage more actively. To strengthen the connection
between theory and application, we will add more theory
questions to the homework, giving you more practice in applying
concepts in different scenarios

Just so you know, taking notes effectively is challenging
(probably impossible) if you are multitasking on your laptop.

Tips for success

• Frequently review material
• E.g., active recall and spaced repetition

• Come to office hours to clarify concepts
• Take notes in class
• Engage in class discussions

• E.g., Ask one question in class each week
• If you are consistently eating chocolate every Sunday, Tuesday,

and Thursday, between 4pm - 5:15pm, you are doing fine

Learning Goals
• Understand the concept of technical debt
• Reflect on personal experiences of technical debt
• Explain the importance of technical debt management
• Learn techniques for managing technical debt

Technical Debt

Technical debt

https://martinfowler.com/bliki/TechnicalDebt.html

Internal quality makes it easier to add
features

2
4

Technical Debt != Bad Internal Quality
“In software-intensive systems, technical debt consists of design or
implementation constructs that are expedient in the short term but
that set up a technical context that can make a future change more
costly or impossible. “

“Technical debt is a contingent liability whose impact is limited to
internal system qualities – primarily, but not only, maintainability
and evolvability.”

Managing Technical Debt: Reducing Friction in Software Development. Philippe Kruchten, Robert Nord, Ipek Ozkaya

High internal quality is an investment

26

What actions cause technical debt?
Tightly-coupled components

Poorly-specified requirements

Business pressure

Lack of process

Lack of documentation

27

Lack of automated testing

Lack of knowledge

Lack of ownership

Delayed refactoring

Multiple, long-lived
development branches

...

Bitrot: Even if your software doesn’t
change, it will break over time

28

CREATES TECHNICAL
DEBT

Bad: Too much technical debt
• Bad code can be demoralizing

• Conversations with the client become awkward

• Team infighting

• Turnover and attrition

• Development speed

• …

30

How to manage technical debt?

Managing Technical Debt: Reducing Friction in Software Development.
Philippe Kruchten, Robert Nord, Ipek Ozkaya

Principles of Technical Debt
Management
1. Technical debt is a useful rhetorical concept for dialogue.
2. If you do not incur any form of interest, then you probably

do not have actual technical debt.
3. All systems have technical debt.
4. Technical debt must trace to the system.

Principles of Technical Debt
Management
5. Technical debt is not synonymous with bad quality.
6. Architecture technical debt has the highest cost of

ownership.
7. All code matters!
8. Technical debt has no absolute measure.
9. Technical debt depends on the future evolution of the

system.

When should we reduce technical
debt?

Managing technical debt

Organizations needs to address the following challenges

continuously:

1. Recognizing technical debt
2. Making technical debt visible
3. Deciding when and how to resolve debt
4. Living with technical debt

Not all technical debt is the same

37

Reckless Prudent

Deliberate “We don’t have time for
design”

“We must ship now and
deal with consequences

(later)”

Inadvertent “What’s layering?” “Now we know how we
should have done it”

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Group Activity
Describe two plausible examples of technical debt in the midterm
scenario (RaceVision).

1. Deliberate, prudent
2. Reckless, inadvertent

Discuss the reason for incurring debt (e.g., value added?) and the
debt payback strategy

How can we avoid (inadvertent)
technical debt?

Common Anti-Patterns
• Not having a QA process! Or no-one follows it

40

Common Anti-Patterns
• Not having a QA process! Or no-one follows it

• Bad version control practices

• Everyone commits to the main branch

• Long-lived feature branches

• Huge PRs

41

Common Anti-Patterns
• Not having a QA process! Or no-one follows it

• Bad version control practices

• Slow and encumbering QA processes

• changes take forever to get merged

• time could be better spent on new features

42

Common Anti-Patterns
• Not having a QA process! Or no-one follows it

• Bad version control practices

• Slow and encumbering QA processes

• Reliance on repetitive manual labor

• focused on superficial problems rather than structural ones

• results may vary (e.g., manual testing)

• mistakes will happen!

43

Case Study: Knight Capital

44

In layman's terms, Knight Capital Group realized a $460 million loss in 45-minutes.
Remember, Knight only has $365 million in cash and equivalents. In 45-minutes Knight
went from being the largest trader in US equities and a major market maker in the
NYSE and NASDAQ to bankrupt.

